1 (a (i) butanoic/butyric acid (1) CH₃CH₂COOH/C₂H₅CH₂COOH (1) [2] (ii) any three from: (same) general formula (1) (consecutive members) differ by CH₂ (1) same functional group (1) common methods of preparation (1) physical properties vary in predictable manner/show trends/gradually change or example of a physical property variation i.e. melting point/boiling point/ volatility (1) [3] (b) (i) displayed formula of propan-1-ol, all bonds shown separately (1) [1] (ii) acidified (1) potassium manganate(VII)/potassium permanganate/KMnO₄ or potassium dichromate(VI)/K₂Cr₂O₇/potassium dichromate (1) [2] (c) (i) zinc + propanoic acid \rightarrow zinc propanoate (+ hydrogen) (1) [1] (ii) calcium oxide + propanoic acid → calcium propanoate + water (1) [1] (iii) LiOH + CH₃CH₂ COOH \rightarrow CH₃CH₂COOLi + H₂O (1) [1] (d) (i) concentration (of acid in C) is less/halved or concentration of A is more/ doubled. (1) less collisions **or** more collisions <u>in A</u> (than in C) (1) [2] (ii) (higher temperature in B particles/molecules/atoms) move faster/have more energy/more have E_a or (particles/molecules/atoms) in A move slower/have less energy/less have E_a (1) more collisions or less collisions in A (than in B) (1) [2]

- (iii) It (D) has strong (acid) **and** A has weak acid/(D) stronger/(D) ionises more/(D) dissociates mo **or** A is weaker/A ionises less/A dissociates less (1)
 - It (D) has <u>higher concentration of hydrogen ions</u> **or** \underline{A} has a <u>lower concentration of hydrogen ions</u> (1)

more collisions (in D) **or** fewer collisions <u>in A</u> (1)

[Total: 18]

[3]

2 (a any three from: particles have more energy (1) move faster (1) collide more frequently (1) more particles have energy greater than Ea [3] guidance: more colliding molecules have enough energy to react is worth (2) **(b)** particles move in all directions/randomly in both liquids and gases (1) no bonds/very weak forces between particles in gases (1) molecules can move apart/separate (to fill entire volume) (1) OR bonds/forces/IMF between particles in liquids (1) molecules cannot move apart/separate (so fixed volume in liquids) (1) [3] [Total: 6]

(a	same general formula consecutive members differ by CH_2 same chemical properties same functional group physical properties vary in predictable way / give trend – mp increases with n etc.					
	common methods of preparation any THREE					
(b)		they have the same molecular formula not general formula	[1]			
		different structures / structural formulae	[1]			
	(ii)	CH ₃ -CH ₂ -CH(OH)-CH ₃ / (CH ₃) ₃ C-OH not ether-type structures NOTE butan-2-ol and 2-methylpropan-2-ol acceptable	[1]			
(c)		air/oxygen / (acidified) potassium chromate(VI) / (acidified) potassium manganate(VII) must have oxidation states	[1]			
	(ii)	carboxylic acid / alkanoic acid CH_3 - CH_2 - $COOH$ / C_3H_7COOH / $C_4H_8O_2$ accept C_4H_7OOH	[1] [1]			
(d)		measure volume of carbon dioxide time accept day / hour for time mark	[1] [1]			
	(ii)	increase in temperature / more yeast present / yeast multiplies	[1]			
	(iii)	glucose used up accept sugar not reagent / reactant	[1]			
		concentration of ethanol high enough to kill/poison yeast / denature enzymes not kill enzymes	[1]			
	(iv)	to prevent aerobic respiration / ethanol would be oxidised / ethanoic acid/ acid formed / lactic acid formed / dioxide and water formed	[1] carbon			

[Total: 15]

3

4	(а	23p	23e 20e 23e	28n	[1] [1] [1]
	(b)		cond	ains) iron with other element(s) / compounds / suitable named element is absent = 0	[1] [1]
		(ii)	mild steel cars / fridges / white goods / construction etc. credit any sensible suggestion e.g. roofing, nails, screws, radiators or		[1] [1]
			stainle cutlery surgic	ess steel y / chemical plant / jewellery / (kitchen) utensils / named kitchen utensil / cal equipment / car exhausts etc. anadium steel (this is in the question)	[1] in cars / [1]
	(c)		V ₂ O ₃ VO ₂		[1] [1]
		(ii)		odium hydroxide(aq) or other named alkali mmonia	[1]
			cond	vanadium(IV) oxide dissolves / reacts to remove vanadium(III) oxide)	[1] [1]

[Total: 12]